Numpy functions in Python : In the python language, the development is done and sacrifices the runtime process.
There are many applications to speed up python operation.
The use of Numpy function is possible if you are familiar with the functions and routines.
The N-dimensional matrixes have the same type of elements and began to work with array function.
There are Numpy functions as,
|
Operators |
Description |
1 |
Add() |
It will return the string concatenation for two arrays of str. |
2 |
Multiply() |
Return the string with the multiple elements wise and concatenation. |
3 |
Center() |
The copy will return string with elements in string of specified length. |
4 |
Capitalize() |
It returns copy of string with only first character capitalized. |
5 |
Lower() |
It will return the element to convert into lowercase. |
6 |
Upper() |
It will return the element to convert into uppercase. |
7 |
Splitlines() |
It will get the breaking at line boundaries |
import numpy as np
a=np.arange (9, dtype=np.float_).reshape (3, 3)
print a
b=np.array ([10, 10, 10])
print b
print np.add (a, b)
print np.substract (a, b)
print np.multiply (a, b)
print np.divide (a, b)
Output:-
a: - [[0. 1. 2.]
[3. 4. 5.]
[6. 7. 8.]]
b:-
[10 10 10]
Add two arrays:-
[[10. 11. 12.]
[13. 14. 15.]
[16. 17. 18.]]
Subtract two arrays:-
[[-10. -9. -8.]
[-7. -6. -5.]
[-4. -3. -2.]]
Multiply two arrays:-
[[0. 10. 20.]
[30. 40. 50.]
[60. 70. 80.]]
Divide the two arrays:
[[0. 0.1 0.2]
[0.3 0.4 0.5]
[0.6 0.7 0.8]]
It contains the large of mathematical operations and provides the standard function for arithmetic operations.
The numpy has the trigonometric functions which return the ratios if angle.
Sr.no |
Parameter and description |
1 |
A:is called as the input data |
2 |
Decimals:- |
Function |
Description |
tan |
It is used to compute the tangent element-wise. |
arcos() |
It is inverse cosine element wise |
arcsin() |
It is the inverse sine element wise. |
arctan() |
It’s the trigonometric tangent function. |
degrees() |
Used to convert the angles from radians to degree. |
Rad2deg() |
It converts from radian to degree |
Deg2rad |
It converts from degree to radian |
It will create an array which is spaced values between the start, end, and increment.
It is used to change the dimension of array in Numpy.
Syntax:-
np.arange (Start, End, Increment)
Example:-
import numpy as np
a=np.arange (4)
a1=np.arange (0, 12, 2)
print (a)
a2=np.arange (0, 12, 2).reshape (2, 3)
print(a2)
a3=np.arange (9).reshape (3, 3)
print (a3)
Output:-
[0 1 2 3 4]
[0 2 4 6 8 10]
[0 2 4]
[6 8 10]]
[[0 1 2]
[3 4 5]
[6 7 8]]
The linespace () will generate an array with eventually spaced values between the start and end values using the specified number of the element.
Syntax:-
np.linespace (start, end, number of elements)
Example:-
import numpy as np
a1=np.linespace (1, 12, 2)
print(a1)
a1=np.linespace (1, 12, 4)
print(a1)
a2=np.linespace (1, 12, 2).reshape (4, 3)
print(a2)
Output:-
[1.12.]
[1. 4.66 8.33
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]
[10. 11. 12.]]
This function will generate the arrays with values like logarithmically spaced between the start and end values.
Example:-
import numpy as np
a=np.logspace (5, 10, num=10, base=10000, dtype=float)
print(a)
Output:-
[1.000e+357.7e+385.99e+424e+463.59+502.7e+542.12e+581.6e+621.2e+661.00e+70]
Used to generate the array specified by dimensions and the data type that is filled by specified the number.
Example:-
import numpy as np
a1=np.full ((3), 2)
print(a1)
a2=np.full ((2, 4), 3)
print (a2)
Output:-
[2 2 2]
[[3 3 3 3]
[3 3 3 3]]